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[1] We use a multi-model, multi-scenario climate model
ensemble to identify climate change hotspots in the continental
United States. Our ensemble consists of the CMIP3
atmosphere-ocean general circulation models, along with a
high-resolution nested climate modeling system. We test both
high (A2) and low (B1) greenhouse gas emissions trajectories,
as well as two different statistical metrics for identifying
regional climate change hotspots. We find that the pattern of
peak responsiveness in the CMIP3 ensemble is persistent
across variations in GHG concentration, GHG trajectory, and
identificationmethod. Areas of the southwesternUnited States
and northern Mexico are the most persistent hotspots. The
high-resolution climate modeling system produces highly
localized hotspots within the basic GCM structure, but with a
higher sensitivity to the identification method. Across the
ensemble, the pattern of relative climate change hotspots is
shaped primarily by changes in interannual variability of the
contributing variables rather than by changes in the long-term
means. Citation: Diffenbaugh, N. S., F. Giorgi, and J. S. Pal

(2008), Climate change hotspots in the United States, Geophys. Res.

Lett., 35, L16709, doi:10.1029/2008GL035075.

1. Introduction

[2] Observed late 20th century global warming has been
attributed primarily to anthropogenic changes in radiative
forcing of the climate system [e.g., Intergovernmental Panel
on Climate Change (IPCC), 2007], with further warming of
approximately 1 to 6�C likely to occur by the end of the
21st century [IPCC, 2007]. Precisely how this long-term
global warming will manifest at smaller spatial and tempo-
ral scales is a key question for understanding, avoiding, and/
or preparing for climate change. In particular, design and
implementation of climate change mitigation and adaptation
strategies requires quantification of potential spatial hetero-
geneity in the aggregate climate response. Therefore, there
exists a need to identify climate change hotspots that are
likely to be most responsive to anthropogenic changes in
climate forcing, and to understand the mechanisms under-
lying the enhanced responsiveness in the hotspot regions.
[3] Our analysis is focused on the continental United States

(U.S.). The relative sensitivity of climate to greenhouse gas
(GHG) forcing within the U.S. is important for a number of
reasons. First, the U.S. encompasses a large continental area
with a diversity of climatic regimes. In addition, it is home to a

substantial human population and a large and diverse econ-
omy that is at least partly dependent on climate, including a
large fraction of the global agricultural production. Further,
the U.S. has become a significant party in climate change
negotiations, both because it is one of the largest GHG
emitters and because local and state governments are entering
into climate agreements independent of Federal action [e.g.,
Rabe, 2004]. The latter is particularly relevant for the identi-
fication of climate change hotspots within the United States,
as the emergence of the state government as a primary unit of
climate policy action enhances the need for regional- and
state-level climate change information [Rabe, 2004].
[4] Climate change hotspots can be identified based on

the magnitude of physical climate response (as in work by
Giorgi [2006]) or on the vulnerability to climate change
impacts [e.g., Diffenbaugh et al., 2007a]. Specific impact
assessments can provide detailed quantification of the poten-
tial vulnerability of particular natural and human systems
[e.g.,White et al., 2006]. Although a framework does not yet
exist for quantitatively exploring a large suite of possible
impacts while also capturing the likely spatial complexity of
physical climate change, measures of the net change within
multivariate climate space can serve as a metric of the total
responsiveness of different geographic areas, which can in
turn provide a general indication of which areas might be
faced with the greatest aggregate changes in physical climate
stress in the coming decades. To date, such response-based
hotspot identification has focused on global climate model
assessment, using either statistical [Williams et al., 2007] or
subjective [Diffenbaugh et al., 2007a; Giorgi, 2006] aggre-
gation of multiple climate variables.
[5] Here we focus on the physical response, employing

statistical measures of aggregate climate change to identify
regional climate change hotspots within the continental U.S.
We explore the climate change uncertainty space by ana-
lyzing: (1) the CMIP3 multi-model atmosphere-ocean gen-
eral circulation model (AOGCM) ensemble [IPCC, 2007],
which allows us to examine the effect of different physical
treatments of the climate system as well as different GHG
emission scenarios; (2) two aggregated statistical metrics of
climate change, which allows us to examine the sensitivity
to the hotspot identification method; and (3) a high-resolu-
tion nested climate simulation, which allows us to explore
the importance of fine-scale processes in modulating the
climate change signal. The last of these is important because
both the magnitude [e.g., Diffenbaugh et al., 2005, 2007]
and impacts [e.g., White et al., 2006] of simulated climate
change can vary substantially at sub-GCM grid-scales.

2. Models and Methods

2.1. Climate Model Data

[6] We analyze AOGCM simulations from the CMIP3
multi-model archive. The CMIP3 models successfully cap-
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ture the structure of temperature and precipitation over the
continental U.S. [Randall et al., 2007]. In order to test the
sensitivity of our hotspot identification to GHG concen-
tration, we analyze CMIP3 data from the A2 and B1
emission scenarios [IPCC, 2000]. The A2 and B1 socio-
economic pathways result in GHG concentrations at the
higher and lower ends of the IPCC illustrative scenario
range, respectively [IPCC, 2007]. In order to facilitate
direct comparisons between the A2 and B1 ensemble
simulations, we use results from 15 models archiving data
for both scenarios.
[7] To test the sensitivity of the hotspot identification

to fine-scale climate processes, we employ the Abdus
Salam International Center for Theoretical Physics Regional
Climate Model (RegCM3) [Pal et al., 2007]. RegCM3
is able to capture the climatology of temperature and
precipitation over a number regions of the world [e.g.,
Pal et al., 2007], including the United States [e.g.,
Diffenbaugh et al., 2006]. We use the simulations described
by Diffenbaugh et al. [2005], White et al. [2006], and Trapp
et al. [2007]. The model domain covers the conterminous
U.S. and adjacent ocean waters with a 25 km horizontal grid
interval and 18 levels in the vertical. The RegCM3 simu-
lations use atmospheric boundary conditions from the
NASA finite volume GCM (FVGCM) simulations of
Coppola and Giorgi [2005]. In this configuration, the global
FVGCM grid has 1� horizontal resolution in latitude and
1.25� in longitude, with 18 levels in the vertical. In the
reference simulation the models use observed monthly-
varying SSTs, while in the future climate simulation a
monthly-varying SSTanomaly is added based onA2 scenario
simulations with the HadCM3 AOGCM, as described in
[Giorgi et al., 2004]. Although the atmospheric boundary
conditions provided by the FVGCM are equilibrated with
the prescribed SSTs, inconsistencies between the atmo-
spheric and SST fields could be introduced by the lack of
two-way coupling between the atmosphere and ocean in the
FVGCM simulations.
[8] Finally, in order to examine the role of the large-scale

boundary conditions in shaping the response of the high-
resolution climate model, we also analyze the FVGCM
simulations, using the reference period of 1961-1989 and
the future period of 2071-2099 in the A2 scenario.

2.2. Hotspot Identification

[9] The goal of this study is to develop metrics for
comparing the relative responsiveness of different regions
of the U.S. within a multivariate climate space. This hotspot
identification requires aggregation of positive and negative
changes in a number of climate variables of different scales
and units. In order to meet this challenge, we use two
statistical measures to identify climate change hotspots.
Our identification framework is based on that of Giorgi
[2006], Diffenbaugh et al. [2007a], and Williams et al.
[2007]. Following Giorgi [2006], we quantify the aggregate
response of mean and variability of seasonal temperature
and precipitation. We calculate mean temperature and
precipitation as the long-term average of each year’s
seasonal mean. Following Giorgi [2006], we calculate
temperature variability as the interannual standard deviation
of the seasonal means, and precipitation variability as
the interannual coefficient of variation of the seasonal

means (the interannual standard deviation divided by
the long-term mean), after first detrending the seasonal
timeseries.
[10] Following Giorgi [2006], Diffenbaugh et al.

[2007a], and Williams et al. [2007], we separate each year
into two seasons in order to capture sub-annual changes that
could potentially cancel at the annual-scale (for instance,
drying in one season and wetting in another). We follow
Giorgi [2006] and Diffenbaugh et al. [2007a] in designating
April through September and October through March as the
two 6-month seasons for the continental U.S. These also
encompass the June-July-August and December-January-
February seasons of Williams et al. [2007]. We aggregate
the different seasons by treating them as different variables,
yielding eight total variables to be used in our aggregation
metrics (long-term mean and variability of warm- and cold-
season temperature and precipitation).
[11] We employ two hotspot identification metrics. The

first follows Williams et al. [2007] in employing the
Standard Euclidean Distance (SED) to measure the distance
traveled in multivariate climate space. At each land grid
point, we calculate the total SED between the future (f) and
present (p) periods as:

SEDfp ¼ sqrt SvSEDvð Þ ð1Þ

for

SEDv ¼ xfv � xpv
� �2

= mean abs xfv � xpv
� �� �

ij

� �2
ð2Þ

where xfv is the value of variable v in the future period, xpv is
the value of variable v in the reference period, and
mean[abs(xfv – xpv)]ij is the mean of the absolute value of
land-grid-point change for variable v over all land grid
points ij. The denominator in equation (2) is used to
normalize the metric. We find that using a regional or global
domain in the denominator yields similar results (not
shown).
[12] As an additional metric, we use the squared cord

distance dissimilarity coefficient (SCD) of Overpeck et al.
[1992]. The SCD quantifies the dissimilarity between sam-
ple populations. At each land grid point, we calculate the
total SCD between the future (f) and present (p) periods as
the sum of the SCD scores for each variable v :

SCDfp ¼ SvSCDvð Þ ð3Þ

for

SCDv ¼ x
1=2
fv � x1=2pv

� �2� �
=S:D: x

1=2
fv � x1=2pv

� �2� �	 

ij

 !
ð4Þ

where S.D.([(xfv
1/2 – xpv

1/2)2])ij is the standard deviation of the
land-grid-point dissimilarity values for variable v over all
land grid points ij. Because we normalize the SED values by
the grid-point mean, we instead normalize the SCD values
by the grid-point standard deviation in order to explore the
sensitivity of the hotspot identification to the details of the
identification method.
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[13] In aggregating the different models in the CMIP3
ensemble, we first calculate the eight variables for each
model individually, then calculate the mean value of each
variable from all of the models, and then calculate the
aggregate metrics using those multi-model mean values of
the eight variables.

3. Results

[14] The CMIP3 ensemble dataset shows peak SED
scores (i.e., hotspots) over southern California, northern
Mexico, and western Texas (Figure 1). Minimum CMIP3
SED scores occur over the Gulf Coast and Atlantic Coast
regions, as well as the northern Great Plains. The FVGCM
dataset shows SED peaks over central California, northern
Mexico, and western Texas, although these are more local-
ized than in the CMIP3 dataset. In addition, the FVGCM
shows relatively high SED scores over the Midwestern U.S.

and minimum SED scores over the southeastern and north-
western U.S. The RegCM3 dataset shows highly localized
peak SED scores over southern California, western Arizona,
northern Mexico and the Atlantic Coast, along with sec-
ondary peaks over the Midwestern U.S. The SCD scores
show generally similar patterns as the SED scores for all
three datasets. Key exceptions include muting of the central
California hotspot in the FVGCM simulations, and en-
hancement of the Midwestern hotspot in all three datasets.
[15] The pattern of SED hotspots is shaped more by

changes in interannual variability than by changes in the
long-term mean of the contributing variables (Figure 2). For
instance, the two most prominent contributors to the CMIP3
southern California hotspot are the two seasonal precipita-
tion variability variables, and the three most prominent
contributors to the CMIP3 northern Mexico and western
Texas hotspots are the two seasonal precipitation variability
variables and October-March temperature variability (along

Figure 1. Aggregate climate change scores in the United States: (top) aggregate scores using the Standard Euclidean
Distance (SED) and (bottom) aggregate scores using the Squared Cord Distance (SCD). Unitless.

Figure 2. Variables contributing to aggregate climate change hotspots in the United States: (top) variables contributing to
the CMIP3 hotspots, (middle) variables contributing to the FVGCM hotspots, and (bottom) contributing to the RegCM3
hotspots. The four variables making the highest contribution to the Standard Euclidean Distance (SED) hotspots identified
in Figure 1 are shown for each of the climate model datasets. In order to most readily compare the variable contributions
with the net SED value, we show the square root of the individual SEDv variable scores (see equation (2)). Unitless.
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with April-September mean precipitation over northern
Texas). Likewise, the primary contributors to the FVGCM
central California and western Texas hotspots are the two
seasonal precipitation variability variables, and the two most
prominent contributors to the FVGCM SED Midwestern
hotspot are the two seasonal temperature variability
variables. Additionally, the primary contributors to the
RegCM3 southern California and western Arizona SED
hotpots are the two precipitation variability variables. Across
the simulations, warm-season variability is generally a
stronger contributor than cold-season variability (Figure 2).
[16] The pattern of SED hotspots shows little sensitivity

to either the time evolution or the total concentration of
atmospheric GHGs (Figure 3). For instance, in both the A2
and B1 emissions scenarios, southern California, western
Texas, and northern Mexico emerge with the highest SED
scores in the late 21st century, with the southeastern U.S.
and northern Great Plains showing the lowest SED scores.
Likewise, this is the basic hotspot pattern in both scenarios
throughout the 21st century. Notable exceptions include a
narrowing of the southern California hotspot in the early
21st century of the A2 CMIP3 dataset, as well as a slight
westward migration of the Texas hotspot in the late 21st
century of the A2 CMIP3 dataset.

4. Discussion and Conclusions

[17] The pattern of climate change hotspots in the United
States is generally persistent in the CMIP3 multi-AOGCM
ensemble. Southern California, northern Mexico, and west-
ern Texas show the greatest climate change responsiveness
in the late-21st century using either of the identification
methods that we have applied. The Midwest region also
shows relatively high hotspot metric values, while the Gulf
Coast and Atlantic Coast regions show the least respon-
siveness (Figure 1). Similarly, the pattern of responsiveness
is largely consistent between high- and low-end emissions
scenarios, and throughout the 21st century (Figure 3). This
pattern is mostly in place even in the early 21st century,
when differences in GHG forcing are relatively small
compared to present and the inter-model variability could
damp the climate change signal. This persistence of the
hotspot pattern in the CMIP3 ensemble suggests that the
broad patterns of climate responsiveness may be robust to
climate system variability. (Whether the patterns are robust
to model formulation requires further analysis.)

[18] It is also notable that a single FVGCM realization
not included in the CMIP3 ensemble displays a number of
features seen in that ensemble (particularly for the SED
metric; Figure 1). FVGCM does show considerably more
sensitivity to the hotspot identification method (as does
RegCM3), particularly over California and the Midwestern
United States. This sensitivity of the single realization to the
identification method could indicate that multiple realiza-
tions using multiple climate models are required in order to
generate reliable projections of relative regional climate
sensitivity. In addition, the fact that the FVGCM dataset
consists of only one realization could explain the strength of
the Midwestern hotspot in the FVGCM dataset relative to
the CMIP3 dataset, with multiple realizations in the CMIP3
ensemble potentially damping the magnitude of changes in
seasonal temperature variability (Figure 2). Alternatively,
the relatively fine horizontal resolution of the FVGCM grid
could also contribute to deviations from the CMIP3 ensem-
ble. Likewise, whereas the CMIP3 ensemble consists of
coupled atmosphere-ocean GCM simulations, the FVGCM
realization was generated using prescribed SSTs synthesized
by adding simulated SST changes to an observational SST
timeseries (as described by Giorgi et al. [2004].
[19] The pattern of SED and SCD scores in the RegCM3

simulations highlights the limitations of applying high-
resolution climate models to statistical climate change
hotspot identification. Although the RegCM3 simulations
reveal high scores within some of the areas identified in the
GCM simulations, those hotspot areas are highly localized,
with considerably lower scores elsewhere in the domain
(Figure 1). This localization is also seen in the contributing
variables, with a large range between the few grid-points
showing maximum values and the vast majority of grid-
points showing minimum values (Figure 2). Some of the
differences between the RegCM3 and CMIP3 patterns can
be linked to the forcing by the FVGCM (such as the
relatively high SCD and SED values over the Midwestern
U.S.). However, the overall pattern in the RegCM3 simu-
lations deviates more from the driving FVGCM than the
FVGCM deviates from the CMIP3 ensemble, highlighting
the need for multiple realizations with multiple GCM-RCM
combinations in order to generate robust high-resolution
hotspot identification.
[20] Peak aggregate climate changes in all three climate

model datasets are driven primarily by changes in interan-
nual variability, particularly of precipitation. This domi-
nance of variability results from the fact that there is more

Figure 3. Sensitivity of aggregate climate change scores to greenhouse gas concentration and pathway: (top) results for
the A2 emissions scenario and (bottom) results for the B1 emissions scenario. The aggregate Standard Euclidean Distance
(SED) scores are shown for three three-decade periods of the 21st century. Unitless.
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inter-grid-point heterogeneity in the changes in variability
than in the changes in seasonal mean. The fact that the
hotspot distribution is strongly influenced by changes in
precipitation variability highlights the importance of
accurate modeling of cloud and precipitation processes.
Further, non-hotspot areas should not be considered to be
immune from climate change, as the climatic changes
projected here could have substantial impact in areas that
are not identified as response hotspots [e.g., Trapp et al.,
2007; White et al., 2006].
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